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Benders Decomposition: The Original

min c
t
x + f (y)

s.t. Ax + F (y) � b;

x 2 Rn
+

y 2 Y � Rm



Benders Decomposition: The Original

For �xed ŷ 2 S :

min ctx + f (ŷ)

s.t. Ax � b � F(ŷ);

x 2 Rn
+

�

f (ŷ) + v(ŷ) := min ctx

s.t. Ax + F(ŷ) � b;

x 2 Rn
+

v(ŷ) is

a linear programming problem, with dual:

max (b � F (ŷ))tu

s.t. At
u � c;

u � 0



Benders Decomposition: The Original

min c
t
x + f (y)

s.t. Ax + F (y) � b;

x 2 Rn

y 2 Y � Rm

max (b � F (ŷ))tu

s.t. At
u � c;

u � 0

min
y

max
u

f (y) + (b � F (y))tu

s.t. At
u � c;

u � 0;

y 2 Y � Rm

�

min
y

�

s.t. � � f (y) + (b � F(y))tu; 8u � 0;

y 2 Y � Rm



Benders Decomposition: The Original

min c
t
x + f (y)

s.t. Ax + F (y) � b;

x 2 Rn

y 2 Y � Rm

�

min
y

�

s.t. � � f (y) + (b � F (y))tu ;8u � 0;

y 2 Y � Rm

The right problem has in�nitely many constraints!!!

Add them sequentially (and as many as needed)...



Benders Decomposition: The Original

min �

s.t. � � f (y) + (b � F(y))tu; 8u � 0;
(M)

y 2 Y � Rm

min ctx

s.t. Ax + F(ŷ) � b; (SP(y))

x 2 Rn

k = 0, y0 2 Y , UB =1, LB = �1,
Repeat until UB � LB < ":

✠ Set y = yk .

✠ Solve (SP(y)):

✠ If (SP(y)) is feasible and with optimal multipliers uk

} Update UB = minfUB ; v(yk )g.

} Add the (optimality) cut � � (b � F (y))tuk and solve (M):
LB = �k .

✠ If (SP(y)) is infeasible (dual unbounded):

} Find an extreme direction vk (such that (b � F (y))tvk > 0)

} Add the (feasibility) cut (b � F (y))tvk � 0 and solve (M):
LB = �k .



Example

min 2x1 + 3x2 + 2y

s.t. x1 + 2x2 + y � 3;

2x1 � x2 + 3y � 4;

x1; x2; y � 0:

1 Set an initial feasible y : y0 = 0.

2 Solve SP:

min 2x1 + 3x2

s.t. x1 + 2x2 + y � 3� y0;

2x1 � x2 � 4� 3y0;

x1; x2;� 0:

x � = (2:2; 0:4) and u� = (1:60; 0:20): UB = f � = 5:6

3 Add Optimality Cut to MP:

min �

s.t. � � 2y � 2:2y + 5:6 = �0:2y + 5:6 � � 0

y� = 2:545, LB = �� = 5:909.



Feasibility Cuts

If the subproblem is infeasible (and then, the dual unbounded), the
extreme rays to add feasibility cuts in the form:

� � (b � F (y))tvk > 0

can be found solving:

max(b � F (y))tv

s.t. At
v � 0



Generalized Benders Decomposition

min f (x ; y)

s.t. G(x ; y) � 0; (P)

x 2 X ;

y 2 Y :

Such that:

✠ Y is the set of complicating
variables.

✠ For �xed y , (P) is easy-to-solve
(the problem become convex, or
combinatorial...)

J O U R N A L  OF O P T I M I Z A T I O N  T H E O R Y  AND APPLICATIONS: Vol. 10, No. 4, 1972 

Generalized Benders Decomposition 1 

A. M. GEOFFRmN 2 

Communicated by A. V. Balakrishnan 

Abs t r ac t .  J . F .  Benders devised a clever approach for exploiting 
the structure of mathematical programming problems with com- 
plicating variables (variables which, when temporarily fixed, render 
the remaining optimization problem considerably more tractable). 
For the class of problems specifically considered by Benders, fixing 
the values of the complicating variables reduces the given problem 
to an ordinary linear program, parameterized, of course, by the 
value of the complicating variables vector. The algorithm he 
proposed for finding the optimal value of this vector employs a 
cutting-plane approach for building up adequate representations of 
(i) the extremal value of the linear program as a function of the 
parameterizing vector and (ii) the set of values of the parameterizing 
vector for which the linear program is feasible. Linear programming 
duality theory was employed to derive the natural families of cuts 
characterizing these representations, and the parameterized linear 
program itself is used to generate what are usually deepest cuts for 
building up the representations. 

In this paper, Benders' approach is generalized to a broader 
class of programs in which the parametrized subproblem need no 
longer be a linear program. Nonlinear convex duality theory is 
employed to derive the natural families of cuts corresponding to 
those in Benders' case. The conditions under which such a generaliza- 
tion is possible and appropriate are examined in detail. An illustrative 
specialization is made to the variable factor programming problem 
introduced by R. Wilson, where it offers an especially attractive 
approach. Preliminary computational experience is given. 

1 Paper received April I0, 1970; in revised form, January 28, 1971. An earlier version 
was presented at the Nonlinear Programming Symposium at the University of Wisconsin 
sponsored by the Mathematics Research Center, US Army, May 4-6, 1970. This 
research was supported by the National Science Foundation under Grant No. GP-8740. 

s Professor, University of California at Los Angeles, Los Angeles, California. 
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GBD

min f (x ; y)

s.t. G(x ; y) � 0;

x 2 X ;

y 2 Y :

is equivalent to

min
y

min
x

f (x ; y)

s.t. G(x ; y) � 0;

x 2 X ;

y 2 Y :

min
y

v(y)

s.t. y 2 V \Y :

V = fy : 9x 2 X : G(x ; y) � 0g and v(y) = minx2X ff (x ; y) : G(x ; y) � 0g.



GBD

min
y

v(y)

s.t. y 2 V \Y :

✠ The original problem is infeas./unbounded i� the projection is.

✠ The projection of an optimal solution of the original problem onto the
y-space is an optimal solution of projection (\i�").

✠ Also for � approximations...

✠ Under some conditions (convexity, ...): y 2 V i� supx �
tG(x ; y) � 0,

8� 2 f� 2 Rm
+ :
X

i

�i = 1g.



Benders Decomposition

From duality:

v(y) = sup
u�0

inf
x
f (x ; y) + u

t
G(x ; y)

forall y 2 V \Y .
Hence, the problem is equivalent to:

min
y

sup
u�0

inf
x
f (x ; y) + u

t
G(x ; y)

s.t. sup
x

�
t
G(x ; y) � 0; 8� 2 f� 2 Rm

+ :
X

i

�i = 1g:

So:

min
y

�

s.t. � � inf
x
f (x ; y) + u

t
G(x ; y);8u � 0;

inf
x
�
t
G(x ; y) � 0; 8� 2 f� 2 Rm

+ :
X

i

�i = 1g:



Classical GBD

Input : y0 2 V \ Y , u0 � 0 optimal multiplier, p = 1; q = 0, UB = v(y0), LB = �1,
" > 0 (tolerance)

1 Solve

�̂ = min
y;�

�

s:t :� � inf
x2X

f (x ; y) + ukG(x ; y); k = 0; : : : ; p; (Benders Optimality Cuts)

inf
x2X

�
t
kG(x ; y) � 0; k = 1; : : : ; q(Benders Feasibility Cuts):

with solution ŷ.

if UB � �̂ � " then STOP;

2 Solve v(ŷ):

if v(ŷ) <1 then

if v(ŷ) � �̂ � " then
STOP

else
Increase p 7! p + 1 and compute a multiplier up . GO TO 1

else
Increase q 7! q + 1 and determine �q such that supx2X �t

qG(x ; y) < 0. GO TO 1



Benders Decomposition

✠ If Y is a �nete discrete set, X nonempty and convex and G convex for
each �xed y 2 Y . Then, Benders terminates in a �nite number of
steps.

✠ Benders decompostion is useful when for each u ; �,
supx2X f (x ; y) + uG(x ; y) and supx2X �G(x ; y) can be explicitly
computed with little e�ort as a function of y .

Example 1: Linearly separable

f (x ; y) = f1(x ) + f2(x );G(x ; y) = G1(x ) +G2(x )

✠ infx2X f (x ; y) + uG(x ; y) = v(ŷ) + (f2(y)� f2(ŷ)) + u(G2(y)�G2(ŷ)).

✠ infx2X �G(x ; y) = infx2X f�G1(x )g+ �G2(y)



Optimality Cuts

By Lagrangian duality:

ryv(y) = ry f (x̂ ; ŷ) + û
tryG(x̂ ; ŷ)

Hence, optimality cuts can be written in the form:

� � v(ŷ) +ryv(y)
t (y � ŷ)



Example: Toy Bilinear Problems

min xy

s.t. lx � x � ux ;

y 2 f0; 1g

For �xed ŷ 2 [ly ;uy ]:

v(ŷ) = min ŷx

s.t. lx � x � ux ;

min �

s.t. � � v(ŷ) +ryv(y)
t (y � ŷ);

y 2 f0; 1g

✠ v(y) = lxy , so rv(y) = lx .

✠ If y = 0: � � 0 + lx (y � 0) = lxy .

✠ If y = 1: � � lx + lx (y � 1) = lxy .

min �

s.t. � � lxy ;

y 2 f0; 1g

✠ If lx < 0: �� = lx , y
� = 1,

x � = lx .

✠ If lx � 0, �� = 0, y� = 0,
x � 2 [lx ;ux ].



2-Stage LP with Recourse

min c
t
x + E�[Q(x ; �)]

s.t. Ax = b;

x 2 f0; 1gn

where Q(x ; �) = minfq(�)ty :W y � h(�)�Tx ; y � 0g.

✠ Given a �rst stage decision, x , the realization of the r.v. � is observed.

✠ In the second stage, � is known and y must be taken to satisfy
Wy � � �Tx and y � 0.

✠ y is assumed to cause a penalty of q(�).

If � has a discrete distribution with �nite support f�1; : : : ; �sg, with
P[� = �i ] = pi :

min c
t
x +

sX

i=1

piQ(x ; �i )

s.t. Ax = b;

x 2 f0; 1gn

where Q(x ; �) = minfq ti y :W y � h(�i )�Tx ; y � 0g.



2-Stage Binary Programming with Recourse

min c
t
x +

sX

i=1

piQ(x ; �i )

s.t. Ax = b;

x 2 f0; 1gn

where Q(x ; �i ) = minfq ti y :W yv � h(�i )�Tix ; y � 0g.

min c
t
x + �

s.t. Ax = b;

x 2 f0; 1gn ;

� � Q(x )

where Q(x ) =

sX

i=1

piQ(x ; �i ).



2-Stage LP with Recourse: Optimality Cuts

Fix a solution x = x̂ . If Q(x ; �i ) = minfq ti y :W yv � h(�i )�Tx ; y � 0g is
feasible, its dual is:

max u
t
i (h(�i )�Ti x̂ )

s.t. u t
iW � q

t
i

u � 0:

So, optimality cuts are in the form:

� �

sX

i=1

pi û
t
i (h(�i )�Tix )



2-Stage LP with Recourse: Feasibility Cuts

One way to �nd extreme directions of the dual problem is solving the
following LP:

max�t (h(�i )�Ti x̂ )

s.t. �tW � 0;
X

�i � 1; �i � 0:

with such a solution, the feasibility cut for those realizations (�i ) with
positive obj. val of the problem above is:

�
t (h(�i )�Ti x̂ ) � 0) �

t
Ti x̂ � �

t
h(�)



Uncapacitated Facility Location

✠ A set of potential customers J .

✠ A set of potential facility locations I .

✠ Allocation costs between customers
and facilities: cij , i 2 I , j 2 J .

✠ Opening costs of facilities fi , 8i 2 I .

min
X

i2I

fiyi +
X

i

X

j

cij xij

s.t.
X

i2I

xij = 1; 8j 2 J ;

xij � yi ; 8i 2 I ; j 2 J ;

xij � 0; 8i 2 I ; j 2 J ;

yi 2 f0; 1g; 8i 2 I ;

Redesigning Benders Decomposition for Large Scale Facility
Location

Matteo Fischetti1, Ivana Ljubić2, Markus Sinnl3

1 Department of Information Engineering, University of Padua, Italy, matteo.fischetti@unipd.it
2 ESSEC Business School of Paris, Cergy-Pontoise, France, ivana.ljubic@essec.edu

3 Department of Statistics and Operations Research, University of Vienna, Austria,
markus.sinnl@univie.ac.at

February 11, 2016

Abstract

The Uncapacitated Facility Location (UFL) problem is one of the most famous and most studied
problems in the Operations Research literature. Given a set of potential facility locations, and a set of
customers, the goal is to find a subset of facility locations to open, and to allocate each customer to open
facilities, so that the facility opening plus customer allocation costs are minimized. In our setting, for
each customer the allocation cost is assumed to be a linear or separable convex quadratic function.

Motivated by recent UFL applications in business analytics, we revise approaches that work on a
projected decision space and hence are intrinsically more scalable for large scale input data. Our working
hypothesis is that many of the exact (decomposition) approaches that have been proposed decades ago
and discarded soon after, need to be redesigned to draw the advantage of the new hardware and software
technologies. To this end, we “thin out” the classical models from the literature, and use (generalized)
Benders cuts to replace a huge number of allocation variables by a small number of continuous variables
that model the customer allocation cost directly. Our results show that Benders decomposition allows
for a significant boost in the performance of a Mixed-Integer Programming solver. We report the optimal
solution of a large set of previously unsolved benchmark instances widely used in the available literature.
In particular, dramatic speedups are achieved for UFL’s with separable quadratic allocation costs—which
turn out to be much easier than their linear counterpart when our approach is used.

1 Introduction

Relevance and importance of mathematical modeling and optimization tools have been widely accepted
by professionals working in the field of business analytics. Predictive and prescriptive data analytics are
nowadays impossible without efficient optimization tools capable of dealing with large amount of data.
These recent synergies between operations research and business analytics impose new challenges for the next
generation of exact algorithms. Despite the huge success of general purpose solvers in the last decade, finding
optimal solutions for Mixed-Integer Programming (MIP) models involving millions of variables still remains
out of reach for most of the important combinatorial optimization problems. This article studies linear and
convex quadratic variant of one of the most famous and most studied problems in the Operations Research
literature: the Uncapacitated Facility Location (UFL) problem. UFL with linear costs and its cardinality-
constrained variant known as the p-median problem play a prominent role in the area of clustering and
classification, where they are used for unsupervised learning; for further references regarding the interplay
of operations research and data mining, see e.g., Meisel and Mattfeld [40], Olafsson et al. [43]. UFL with
quadratic allocation costs, on the other side, appears as an important subproblem in the design of energy
distribution networks.

UFL is defined as follows: Given a set I of potential facility locations, and a set J of customers, the goal
is to find a subset of facility locations to open, and to allocate each customer to a single open facility, so
that the facility opening plus customer allocation costs are minimized. In its classical version, the allocation
cost for each customer is assumed to be a linear function of the demand served by open facilities. The
problem can be easily formulated as a compact Mixed-Integer Linear Program (MILP). In the last 50 years,
two variants of this model (with aggregated and disaggregated constraints) have been traditionally used in

1

Fischetti, Ljubic, Sinnl. Management Science, 2016.



Uncapacitated Facility Location

For each �xed ŷ , the projected problem is:

min
X

i

X

j

cij xij

s :t :
X

i

xij = 1; 8j 2 J ;

xij � ŷi ;8i 2 I ; j 2 J

xij � 0:

and separable for j 2 J :

min
X

i

cij xij

s :t :
X

i

xij = 1; 8i 2 I ;

xij � ŷi ; i 2 I

xij � 0; i 2 I :



Uncapacitated Facility Location

Optimality Cuts:

v(yi ) = min
X

i

cij xij

s :t :
X

i

xij = 1; 8i 2 I ;

xij � ŷi ; i 2 I

xij � 0; i 2 I :

The Lagrangean function is:
X

i

cij x̂ij + û0(1�
X

i

xij ) +
X

i

ûi (x̂i � yi ), so

the Benders cut is:

� � v(ŷ)�
X

i

ûi (yi � ŷi )

(Actually, x̂ and û can be explicitly constructed from ŷ , Fischeti, Ljubic &
Sinnl, 2015)



Convex Uncapacitated Facility Location

min
X

i2I

fiyi +
X

i

X

j

cij x
2
ij

s.t.
X

i2I

xij = 1;8j 2 J ;

xij � yi ; 8i 2 I ; j 2 J ;

xij � 0; 8i 2 I ; j 2 J ;

yi 2 f0; 1g;8i 2 I ;

min
X

i2I

fiyi +
X

i

X

j

cij zij

s.t.
X

i2I

xij = 1; 8j 2 J ;

xij � yi ;8i 2 I ; j 2 J ;

x
2
ij � zij yi ; 8i 2 I ; j 2 J ;

xij � 0; 8i 2 I ; j 2 J ;

yi 2 f0; 1g;8i 2 I ;

Explicit Benders Cuts: � � v(ŷ)�
X

i2I

(u�i + v
�
i z

�
i )(yi � y

�
i )



Modern Benders Decomposition

The success in recent implementations of GBD comes from:

✠ Commercial Solvers as Gurobi, CPLEX, Xpress allow the control of
callbacks.

✠ Benders cuts can be incorporated into a branch-and-cut scheme, as
Lazy Constraints.

✠ Stabilization methods that allow directing the search (Kelley, 1960) or
Level stabilizations:

min
y;�

� +
1

2t
ky � ykk

2 min
y;�

�

ky � ykk
2 � R:

min
y;�

1

2
ky � ykk

2

� � L:

✠ Combinatorial Benders Cuts.



CBC

minfctx or d ty : x 2 PX ; y 2 PY ; (x ; y) 2
PXY ; x 2 Zn1

+ � f0; 1gn2 ; y � 0g.

✠ When solving SP: UB�.

✠ Next time we solve SP add
objSP � UB � ".

✠ If feasible: Update UB .

✠ Otherwise add cuts in the form:X

i2C

xji � jC j � 1

where C is a inclusion-minimal set such that
the SP is not feasible (computable via IIS).
Useful in Map Labeling , Statistical
Classi�cation, ...

Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Combinatorial Benders' Cuts for Mixed-Integer Linear Programming
Codato, Gianni;Fischetti, Matteo
Operations Research; Jul/Aug 2006; 54, 4; ProQuest
pg. 756
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