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Benders Decomposition: The Original

min c'z + f(y)
st. Az + F(y) > b,
z € R}
yeEY CR"

Numerische Mathematik 4, 238—252 (1962)

for solving mixed-variabl
programming problems®

By
J. F. BENDERS**

1. Introduction
e two sllghlly different procedures are presented for solving
ielvarag rogramming problems of the type

..\.x(c nrmu,-rm;s, xck,, yes), 1)

where x€R, (the p-dimensional Euclidean space), y €R,, and S is an arbitrary
subset of R,. Furthermore, 4 is an (m, #) matrix, /(3) i a scalar function and
F(y) an m-component vector function both defined on S, and b and ¢ are fixed
Vectors in K, and Ry, respectively.

An crample s . mixenteer programning groblem i which crain
variables may assume any value on a given interval, whereas
e o e el oy ot o S St af ectors R, with
integral-valued components. thods for solving this problem’ have
been proposed by BEALE (1], Goowy (9] and Laxp and Dora [17]. The use
ofintege variabes,in patilar fo incorporating n the programmin proen
a choice from a sct of alternative discrete decisions, has been discussed by
Daxzic [4].

Other examples are those in which certain variables occur in a lincar and
others in a non-linear fashion in the formulation of the problem (scc ¢.g. GriFFITH
and StEwaRt (7). In such cases f(y) or some of the components of F(y) are

on-linear functions defined on a suitable subset S of R,

 Obviousy, after an aritrary partitoning of the varabls into two mutually
exclusive subsets, any lincar programming problem can be considered as being
of type (1.1). This may be advantageous i the structure of the problem indicates
a natural partitioning of the variables. This happens, for instance, if the problem
is actually a combination of a general linear programming and a transportation
problem. Or, if the matrix shows a block structure, the blocks being linked only.

by some columns, to which also many other block structures can casily be

rducsd. A method of sluion o Bnear programaing prublens f

n designed by DaxTz1c and WoLre (5],
described in this report s a

pm'mionmg of the given problem (1.1) into two sub problems; a programming

the I £

Scincen vt Ao 2326, 1901
e Koninkijie Shel Laborsterium, Amsterdam (Shell Internatonale Research
Maatschappij N.V..




Benders Decomposition: The Original

For fixed § € S:
v(9) is
min c'z + 7 (%) F(9) + v(§) := min clz
s.t. Az > b — F(3), s.t. Az + FP(3) > b,
T ERY = ¢ € R}

a linear programming problem, with dual:
max (b— F(9))'u

st. Alu <egc,
u >0



Benders Decomposition: The Original

min c'z + f(y) max (b— F(3))'u
s.t. Az + F(y) > b, st. Alu > c,
zeR” u>0
yeEY CR™
minmax f(y)+ (b — F(y))‘u myine
v u
st Alu < ¢ st. 6> f(y)+ (b— F(y))'u,vVu >0,

= yeEYCR"
u >0,

ye€Y CR"



Benders Decomposition: The Original

min c'z + f(y) min 6
Yy
t. A F >b
st AT TR 20 0> f(y) + (b - F(3))w, Ve >0,
I:ER = m
. yEYCR
yEYCR

The right problem has infinitely many constraints!!!

Add them sequentially (and as many as needed)...



Benders Decomposition: The Original

. . t
min minc z

st. 0> F(y)+ (b — F(y))'u,Vu >0, st. Az + F(§) > b, (SP(w))

(M) zeR”
yEY CR™

k=0,9%€EY, UB=o00, LB=—,
Repeat until UB — LB < €:

XK

N

T

Set y = vs.
Solve (SP(y)):
If (SP(y)) is feasible and with optimal multipliers uy
<> Update UB = min{UB, v(yx)}.
<> Add the (optimality) cut 8 > (b — F(y)) u and solve (M):
LB = 6.
If (SP(y)) is infeasible (dual unbounded):
<> Find an extreme direction vy, (such that (5 — F(y))*w > 0)

<> Add the (feasibility) cut (b — F(y)) v < 0 and solve (M):
LB = 6.



Example

min 2z; + 322 + 2y
s.t. 1 +2z+y >3,
2z — z + 3y > 4,
Z1,T2,y > 0.

@ Set an initial feasible y: yo = 0.
® Solve SP:
min 2z; + 3zo
s.t. 21 + 22+ y > 3 — 9o,
2z — z3 > 4 — 3o,
zy, 2o, > 0.
z* =(2.2,0.4) and v* = (1.60,0.20): UB = f* =5.6
© Add Optimality Cut to MP:

min 8
st 6>2y—22y+56=-02y+56 6>0
y* = 2.545, LB = 6* = 5.909.



Feasibility Cuts

If the subproblem is infeasible (and then, the dual unbounded), the
extreme rays to add feasibility cuts in the form:

6> (b— F(y))'w >0
can be found solving:

max(b — F(y))'v
st. Aty >0



Generalized Benders Decomposition

JOURNAL OF OPTIMIZATION THEORY AND APPLIC

TONS;: Val. 10, No. 4, 1972

Generalized Benders Decomposition’
2 A. M. GrorrrioN®
min f(z,y)
Abstract. J. F. Benders devised a clever Appm:\ch for exploiting

V. Balaks
st. G(z,9) >0, (P)
the structure of mathen: g problems with com-

T € X plicating variables (vmuhhxwhv:h when temporarily fixed, render
1 the remaining optimi problem considerably more tractable).

For th das o problems specically consdered by Benders fixing

y E Y the values of the complicating variables reduces the given problem
t0 an ordinary linear program, parameterized, of course, by the

value of the complicating variables vector. The algorithm he

proposed for finding the optimal value of this vector employs a

cutting-plane approach for building up adequate representations of

Such that: (i) the extremal value of the linear program as a function of the
parameterizing vector and (i) the set of values of the parameterizing

vector for which the linear program is feasible. Linear programming

>I< Y iS the set of complica.ting duality theory was employed to derive the natural families of cuts

these and the ized linear

Communicated by

o program itself is used to generate what are usually deepest cuts for
variables. Raing up the epesntaon v

In this paper, Benders' approach is generalized to a broader

. class of programs in which the parametrized subproblem need no

—to- Jonger be a lincar program. Nonlincar conves dualiy theory is

I For fixed y, (P) is easy-to-solve i o G i o o o oty

those in Benders case. The conditons under which such a generaliza-

(the problem become convex, or onis possbleand i An e

specialization is made to the variable factor programming problem

combinatorial.. ) introduced by R. Wilson, where it offers an especially

approach. Preliminary computational expericnce is given.

xmw secsived April 10, 1970;in rvised form, Juauary 28, 1971, An exlice vesion

the Univensity of Wisconsin

momored by " Miuemais Roverch Conn, U8 Army, 4-6, 1970, This

rescarch was supported by the National Science Foundation under Grant No. GP-8740.
*Prafeson, Universiy of California at Loa Angeles, Los Angeen, Cuornt.

© 1972 Pl Publshing Corporaton, 227 West 17¢h S, Netw York, N.. 10011



GBD

min f(z,y)
st. G(z,y) >0,
z e X,
yevY.

is equivalent to

min min f(z, y)
y @

st. G(z,y) >0,

z € X,
yev.
min v(y)
Y
st. ye VnY.

V={y:3dz € X:G(z,y) >0} and v(y) = min.ex{f(z,y) : G(z,y) > 0}



GBD

min v(y)
y

st. ye VnY.

I The original problem is infeas./unbounded iff the projection is.

5¢

The projection of an optimal solution of the original problem onto the
y-space is an optimal solution of projection (“iff”).

N

Also for ¢ approximations...

N

Under some conditions (convexity, ...): y € V iff sup, A’G(z, y) > 0,
VAE{AERT: Y A =1}



Benders Decomposition

From duality:

o(y) = supint £ (2, 3) + 4 G(z, )
u>0 %

foraly e VNY.
Hence, the problem is equivalent to:

minsupinff(z, y) + utG(a:, Y)
Y u>0 2

s.t. sup\'G(z,y) >0, VAE {AERY : Z}\i =1}

So:

min 6
y

s.t. 6 > inf f(z, y) + v' G(z, y),Vu > 0,

ilefAtG(z,y) >0, VA€ {AeRT: in =1}.

7



Classical GBD

Input :yo € VN Y, u > 0 optimal multiplier, p =1,¢ =0, UB = v(y), LB = —o0,
€ > 0 (tolerance)

@ Solve

6 = min 6
v,6
s.t.0 > inf f(z,y) + wG(z,y),k =0,...,p, (Benders Optimality Cuts)
TEX

in)fc )\ZG(I, y) >0,k =1,..., q(Benders Feasibility Cuts).
zT€

with solution 7.
if UB < § — ¢ then STOP;

@ Solve ¥(§):
if v(§) < oo then
if v(y) < 6 — e then
I STOP
else
| Increase p — p + 1 and compute a multiplier u,. GO TO 1

else
L Increase g — g + 1 and determine A, such that sup,cx )\:G(z, y)<0. GOTO 1



Benders Decomposition

" If Y is a finete discrete set, X nonempty and convex and G convex for
each fixed y € Y. Then, Benders terminates in a finite number of
steps.

I Benders decompostion is useful when for each u, A,
sup,cx f(z,y) + uG(z, y) and sup,x AG(z, y) can be explicitly
computed with little effort as a function of y.

Example 1: Linearly separable

f(e,y) = fi(z) + fo(2), G(2,y) = Gi(2z) + Ga(2)
T infeex f(2,9) + uG(2,y) = v(9) + (£(y) - £(9)) + w(G2(y) — G2(9))-
Hoinfrex AG(z,y) = infoex{AG1(2)} + AG2(v)



Optimality Cuts

By Lagrangian duality:

Vyu(y) = Vyf(2,9) + 4V, G(2, 9)

Hence, optimality cuts can be written in the form:

0> v(9)+ Vyu(y)'(y— 9)



Example: Toy Bilinear Problems

For fixed § € [l uy]:

min zy ) o
st L <z < ug, v(9) = min jz
y € {0,1} st L <z <y,
min 6 " v(y) = Ly, so Vo(y) = k.
0 0 HIfy=0: 6> 0+ L(y—0)=Ly.
st. 0> 9(3) + Vyu(y) (v - 9), y 20+L(y-0) =1Ly
y €{0,1} HIfy=10>L+L(y—1)=kLy.
’I*Ifl1<0:g*:l2’y*:1’
min 6 o =1,
s.t. 0> Ly,

¢

IflzZO,G*:O, y*:(],
y € {0,1} 2* € [L, w].



2-Stage LP with Recourse

min ¢’z + E:[Q(z, £)]
s.t. Az = b,
z €{0,1}"
where Q(z,€) = min{q(€)'y : Wy > h(€) — To,y > 0},
I Given a first stage decision, z, the realization of the r.v. £ is observed.

I In the second stage, ¢ is known and y must be taken to satisfy
Wy > ¢ — Tz and y > 0.

"H y is assumed to cause a penalty of g(¢).
If ¢ has a discrete distribution with finite support {£,..., &}, with
P[¢ = &] = pi: .
min c‘z + Z p: Q(z, &)
i=1
s.t. Az = b,
z € {0,1}"
where Q(2,¢) = min{gfy : Wy > h(¢) — Te,y > 0}.



2-Stage Binary Programming with Recourse

min ¢z + ) piQ(, &)
i=1
s.t. Az = b,
z € {0,1}"

where Q(z,¢;) = min{qly : W yv > (&) — Tiz,y > 0}.
min c'z + 6
s.t. Az = b,

z € {0,1}",
6> Q(z)

where Q(z) = ZPiQ(m,Ei)-
i=1



2-Stage LP with Recourse: Optimality Cuts

Fix a solution z = z. If Q(z,¢;) = min{qly : W yv > h(&) — Tz,y > 0} is

feasible, its dual is:

max u/(h(&) — Ti%)
s.t. ufW < qf
u > 0.

So, optimality cuts are in the form:

6> piif (h(é) — Tiz)
i=1



2-Stage LP with Recourse: Feasibility Cuts

One way to find extreme directions of the dual problem is solving the
following LP:

max A (k(¢&) — Tiz)
st. MW <0,

Zkigl,)\izo.

with such a solution, the feasibility cut for those realizations (£;) with
positive obj. val of the problem above is:

M(r(&) — Tiz) < 0= ATz > A'h(€)



Uncapacitated Facility Location

5

R

>I4

>I4

A set of potential customers J.
A set of potential facility locations I.

Allocation costs between customers
ey, s €1,5 € J.

Opening costs of facilities f;, Vi € I.

Yt Y e

and facilitie

s.t.

1€

z; =1,V € J,
1€
z; <y,Vi€l,jeEJ,
z; >0,Viel,jelJ,
y; € {0,1},Vi € I,

Redesigning Benders Decomposition for Large Scale Facility
n

farkus Sinnl®

Matteo Fischetti!, Ivana Ljubic?,
1 Department of Information r..guw.mu University of Padua, Ttaly, matteo.fischettiGunipd.it
SSEC Business School of Paris, Cergy-Pontoise, France, ivana.ljubic@essec.cdu

3 Department of Statistics and Opﬂnuum Research, University of Vienna, Austria,
‘markus sinnl@univie.ac.af

February 11, 2016

Abstract.

The Uncapacitated Facility Location (UFL) problem is one of the most famous and most studie
problems in the Operations Research literature. Given a set of potential facility locations, and a set of
the goal is to find a subset of facility locations o open, and to allocate cach customer to open
o that the facility opening plus customer allocation costs are minimized. In our setting, for
t is assumed to be a linear or separable convez quadratic function.
ics, we revise approaches that work on a

customers,
each customer the allocat;

Motivated by recent UFL applications in business anal
projected decision space and hence are intrinsically more scalable for large scale input data. Our working,
hypothesis is that many of the exact (decomposition) approaches that have been proposed decades ago
and discarded soon after, need to be redesigned to draw the advantage of the new hardware and software
FmET e o G e e s e e et
Bender a huge number of allocation variables by a small number of continuous variables
(U e 0 G (T G I, (O M (s e e P
for a significant boost in the performance of a Mixed-Integer Programming solver. We report the optimal
solution of a large set of previously unsolved benchmark instances widely used in the available literature.
In particular, dramatic speedups are achieved f s with separable quadratic allocation costs —which
turn out to be much casier than their linear counterpart when our approach s us

Introduction
ling and optimization tools have been widely accep
Predictive and prescriptive data analytics

levance and importance of mathematical mod
professionals working in the field of business analytics.
vadays impossible without efficient optimization tools capable of dealing with large amount of da
ese recent synergies between operations research and business analytics impose new challenges for the n
reration of exact algorithms. Despite the huge success of general purpose solvers in the last decade, find
imal solutions for Mixed-Tnteger Programuming (MTP) models involving millions of variables still rema
of reach for most of the important combinatorial optimization problems. This article studics lin
wex quadratic variant of one of the most famous and most studied problems in the Operations Resea
rature: the Uncapacitated Facility Location (UFL) problem. UFL with linear costs and its cardinali
sstrained variant known as the p-median problem play a prominent role in the area of clustering ¢
ssification, where they are used for unsupervised learning; for further references regarding the interp
operations research and data mining, see e.g., Meisel and Mattfeld [40], Olafsson et al. [43]. UFL w
adratic allocation costs, on the other side, appears as an important subproblem in the design of ene

tribution networks

Fischetti, Ljubic, Sinnl. Management Science, 2016.



Uncapacitated Facility Location

For each fixed ¢, the projected problem is:

ming E By
L

s.t.Zmij =1,Vy € J,
i
z; <gi,Viel,jeJ
zy; > 0.

and separable for 5 € J:
min Z GOt
i

S.t.ZZi]' =1,Vi e,
zij <Pt €1
z; > 0,1 € 1.



Uncapacitated Facility Location

Optimality Cuts:
v(ys) = minZ Gy
i

s.t.Z:cZ'] =1,vViel,
i

z; < i1 €1
z; > 0,1 € 1.
The Lagrangean function is: Z cijZi + 1o(1 — Z zij) + Z (2 — y5), so

z i

the Benders cut is:

0> v(9)— Y iy — %)
i
(Actually, £ and @ can be explicitly constructed from 7, Fischeti, Ljubic &
Sinnl, 2015)



Convex Uncapacitated Facility Location

m1n2ﬁyz+zzcn% mln;fzyz‘FZchzU

1€l
s.t. Zmzj:l,vﬂe-]r tezf ]
i€l ‘ ' z; <vy;,Viel,jeJ,
zy <y, Vi€l j €, o2 <zgy,VieLjeJ
z; 20,Viel,j€J, 1];02]31',61 ',EJJ |
amss 1
v € {01}, Vi€, et
Yi (S {01 1})V1‘ € I’

Explicit Benders Cuts: 6 > v(g) — Z(u: + vz (v — )
il



Modern Benders Decomposition

The success in recent implementations of GBD comes from:

5¢

5¢

<

min

N

Commercial Solvers as Gurobi, CPLEX, Xpress allow the control of
callbacks.

Benders cuts can be incorporated into a branch-and-cut scheme, as
Lazy Constraints.

Stabilization methods that allow directing the search (Kelley, 1960) or
Level stabilizations:

1 2 : .1 2

6+ —|ly — min 6 mafme (o —

+ ol = well ~ niz 5 v — il
lly — el < B. 6<L.

Combinatorial Benders Cuts.



CBC

Combinatoril Benders Cutsfor Mixateger Lines Programmi
oo Gy CoEIad
s A 3415 0654, & Proues.

P

min{cta; or dty iz € Px,y € Py,(z,y) € omametons: i
Pxy,z € Z}! x{0,1}™,y > 0}. S R

Combinatorial Benders’ Cuts for

% When SOlVing SP UB* . Mixed-Integer Linear Programming

Glanni Codato, Matteo Fischetti

[

" Next time we solve SP add
Objsp S UB —e¢.

I If feasible: Update UB.
" Otherwise add cuts in the form:

ijiﬁlcl—l

1€C

where C is a inclusion-minimal set such that
the SP is not feasible (computable via IIS).
Useful in Map Labeling , Statistical
Classification,
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