GAMS

GAMS

Outline |

Introduction

Introduction 2 /90

GAMS

vV v .vyY

Introduction

The General Algebraic Modeling System
Roots: World Bank, 1976
Went commercial in 1987

Application Areas:

Agricultural Economics
Chemical Engineering
Econometrics
Environmental Economics
Finance

International Trade
Macro Economics

Management Science/OR

Applied General Equilibrium
Economic Development
Energy

Engineering

Forestry

Logistics

Military

Mathematics

3/90

The Vision: World Bank Slide, 1976

IDEAL TECHNOLOGY

REAL WORLD
PROBLEM |
[7

ANALYST

GENERAL ALGEBRAIC
MODELING SYSTEM

DATA €—> MODEL <&—> SOLUTION

s |

Operating Systems
Computer Languages
Solution Packages

RESULT: - Limited drain of resources

~ Same representation of models
for humans and machines

- Model representation is also
model documentation

Introduction 4 /90

Language

Declarative Language:
» Similar to mathematical notation
» Few basic language elements: sets, parameters, variables, equations, models

» Model is executable (algebraic) description of the problem

Imperative Elements:
» Control flow statements: loops, for, if, ...
» build algorithms within GAMS
» exchange data with other systems

Introduction 5 /90

Independence of Model and Solver

GAMS is not a Solver!

GAMS: Model building and interaction with solvers and environment.

Solver: Solve an instance (instantiation of a model with data) using mathematical
optimization.

» Major commercial and academic solvers integrated:
31 solvers, half of them actively developed/updated

» Switch between solvers with one statement:
option solver = scip;

Introduction 6 /90

Solvers <+ Problemtypes (GAMS 24.5)

LP MIP NLP MCP MPEC CNS DNLP MINLP QCP MIQCP Stoch. Global

ALPHAECP
ANTIGONE 1.1
BARON 15.8
BDMLP
BONMIN 1.8
CBC29
CONOPT 3
COUENNE 0.5
CPLEX 12.6
DECIS
DICOPT
GUROBI 6.0
IPOPT 3.12
KNITRO 9.1
LGO

LINDO 9.0
LOCALSOLVER 5.5
MILES
MINOS
MOSEK 7
MSNLP
NLPEC
OQNLP

PATH

SBB

SCIP 3.2
SNOPT
SOPLEX 2.2
SULUM 4.3
XA

XPRESS 28.01

Introduction

X X X X X X x

x

X X X X X

x

X
X

X X X X X

x

X
X

X
X

X X X X X

x

X
X
X

X X X X X X

x

X
X
X

7/9

Independence of Model and Platform

Supported Platforms:

W) & s

ALPHAECP
ANTIGONE 1.1
BARON 15.8
EoiLP
BoNMIN 1.8
cec29
conopr 3
couennE 0.5

LNDOGLOBAL 9.0
LOCALSOLVER 5.5
MiLES

MiNos

MosE« 7

shL

XPRESS 26.01

Introduction

86 32bit
mS Windows

R N N S NS R RN RN

Solver/Platform availabi

86 6abit
MS Windows

R N N R R S RN R Y

(SRR R RN

ity - 2

86 6abit x86 64bit

Linux

R N N N S R R RN RY

(R RS RN E RN

Macos

(SR SRR R RN

R N R RN R RN

(R RN RN

x

25
X86 6abit Sparc 6abit 1BM Power 6abit
soLamis

soLamis
v

(RSN RY

<

<

LN

<

LY

v

AU NY

<%

v

LN

LN

AN

0‘“’« A
LarlrlS windows

Tools/Platform availability - 24.5

By

sk
aiB2GMs
cHauPD

GAMSIDE
GAMS POSIX Utiities
GDxzACCESS
GDX2HAR
GDX2SQUTE
GDX2VEDA
GoxaxLs
GDxCoPY
GOXDIFF
GDXDUMP
GDXMERGE
GOXMRW
GDXRANK
GDXRENAME
GOXRRW
GDXTROLL.
GDXVIEWER
GOXKRY
GMSUNZP.
HARZGDX
DECMDS
invERT
MCFILTER
MDB2GMS
MoDEL2TEX
s26MS
MSAPPAVAIL
SCENRED
scenreDz

xa6 32bit
MS Windows

R N N R N R S RSN RN

X86 6abit
MS Windows
32bit

X86 6abit x86 6abit x86 6abit Sparc 64bit

Linux

L R R RN

LN L R N SRR

LN

LY

Macos x

R R R RN

LN L R N SN

LN

LY

soLaRis

LN R R R Y

(R NY

v
v

sreonly
v

RN

AN

soLaRis

LY

LN LR S NN

(R NY

v
v

src only
v

L NEENN

AN

1M Power 6abit

ax

LY

LN LR S NN

(R RY

v
v

srconly
v

LR NN

LY

8 /90

Documentation and Help

Online: http://www.gams.com/help (with search)
Offline: <GAMS system directory>/docs/index.html (no search, use grep!)

» GAMS — A User's Guide: Tutorial, Basics, Advanced Topics
McCarl (Expanded) GAMS User Guide

Solver Manuals

Tools Manuals

APls: Tutorials and Reference Manuals

vV V. v v Y

Release Notes

Tutorial Videos: http://www.youtube.com/user/GAMSLessons
Support wiki: http://support.gams.com/doku.php

Discussion group: http://www.gamsworld.org/

Introduction 9 /90

http://www.gams.com/help
http://www.youtube.com/user/GAMSLessons
http://support.gams.com/doku.php
http://www.gamsworld.org/

Model Libraries
Online: http://www.gams.com/modlibs
Offline: gamslib, apilib, datalib, emplib, testlib tools

» GAMS Model Library

> representing interesting and sometimes classic problems
> illustrating GAMS modeling capabilities

Introduction 10 / 90

http://www.gams.com/modlibs

Model Libraries
Online: http://www.gams.com/modlibs
Offline: gamslib, apilib, datalib, emplib, testlib tools

» GAMS Model Library

> representing interesting and sometimes classic problems
> illustrating GAMS modeling capabilities

v

GAMS API Library

> scripts to compile and execute GAMS API examples
GAMS Data Utilities Library

> demonstrate utilities to interface GAMS with other applications
GAMS EMP Library

> illustrate and test capabilities of extended mathematical programming facility

v

v

Contributed Libraries:

» FINLIB - financial optimization models (by Consiglio, Nielsen and Zenios)
» NOALIB — nonlinear optimization applications models (by Neculai Andrei)

GAMS Testlib Library

> testing and quality control

v

v

Introduction 10 / 90

http://www.gams.com/modlibs

Outline |

Basic Modeling

Basic Modeling 11 /90

Cows & Pigs Example

Variables:
x1 the number of cows to purchase

x> the number of pigs to purchase
Objective:

maximize z = 3x; + 2x

Constraints:

X1 € {0,1,2}
x € {0,1,2}
x1+x <3

File: cowspigs.gnms

Basic Modeling

12 /90

Structure of GAMS models

Instructions:

» a GAMS model is a sequence of instructions in the GAMS language

» multiline instructions, empty lines, and several instructions per line are allowed
» instructions should be closed with a semicolon ’;’
>

case insensitive (1)

Basic Modeling 13 /90

Structure of GAMS models

Instructions:
» a GAMS model is a sequence of instructions in the GAMS language
» multiline instructions, empty lines, and several instructions per line are allowed
» instructions should be closed with a semicolon ;’
» case insensitive (!!)
Comments and Documentation:
» lines that start with a '*' are comments and thus ignored

» documenting text can be contained inside instructions (we will see)

Basic Modeling 13 /90

Structure of GAMS models

Instructions:
» a GAMS model is a sequence of instructions in the GAMS language
» multiline instructions, empty lines, and several instructions per line are allowed
» instructions should be closed with a semicolon ;’
» case insensitive (!!)
Comments and Documentation:
» lines that start with a '*' are comments and thus ignored
» documenting text can be contained inside instructions (we will see)
Entities (Sets, Data, Variables, Equations, ...):

2 steps to build an entity: Declaration and Definition

v

» Declaration: state the existence of an entity

» Definition: assign a value or a “form” to an entity
> no entity can be referenced before it was declared
>

names start with letters and can contain up to 62 further characters
(excluding -, %, $)

Basic Modeling 13 /90

Variables

Syntax: [var-type] variable[s] varname [text] {, varname [text]}
» var-type allows to pre-determine the Range of a variable:

Variable type Range
free (default) R

positive R>q

negative R<o

binary {0,1}

integer {0,1,...,100} ()

semicont {0} U[l,u] (default: £=1, u= c0)

semiint {0yu{l,¢+1,...,u} (default: £=1, u=100)
sosli, sos2 special ordered sets of type 1 and 2

» Examples:

variables x, y, objvar;
positive variable x;
integer variable z;

w N

Basic Modeling 14 / 90

Variable Attributes

Attributes of a variable:

Attribute Meaning
.1lo lower bound on variable range
.up upper bound on variable range
fx fixed value for a variable
.1 current primal value (updated by solver)
.m current dual value (updated by solver)
.scale scaling factor
.prior branching priority
» Examples:
1 x.up = 10;
2 y.£fx = 5.5;
3 display z.1;

Basic Modeling

15 / 90

Equations

» Equations serve to define restrictions (constraints) and an objective function
Declaration:

» Syntax: Equation[s] eqnname [text] {, eqnname [text]} ;

» Example:

1 Equation objective "Objective Function";

Basic Modeling 16 / 90

Equations

» Equations serve to define restrictions (constraints) and an objective function
Declaration:

» Syntax: Equation[s] eqnname [text] {, eqnname [text]} ;

» Example:

1 Equation objective "Objective Function";

Definition:
» Syntax: eqnname(domainlist).. expression eqn_type expression;
eqn_type meaning

—e= —
=g= >

=1= <

=n= no relation between left and right side
=x= for external functions

=c= for conic constraints

=b= for logic constraints
» Example:

1 objective.. objvar =e= 2 » x + 3 xy *xy—y + 5 % z ;
2 el.. x +y =1l= z;

Basic Modeling 16 / 90

Model statement

» Model = a collection of equations
» Syntax:
model[s] model_name [text] [/ all | eqn_name {, eqn_name}]
{,model_name [text] [/ all | eqn_name {, eqn_namel}] };
» Example:

1 model m / all /;
2 model m / objective, el /;

Basic Modeling 17 / 90

Model statement

» Model = a collection of equations
» Syntax:
model[s] model_name [text] [/ all | eqn_name {, eqn_name}]
{,model_name [text] [/ all | eqn_name {, eqn_namel}] };
» Example:

1 model m / all /;
2 model m / objective, el /;

Attributes:
set by user set by solver
iterlim iteration limit iterusd number of iterations
reslim time limit in seconds resusd solving time
optcr relative gap tolerance modelstat model status

optfile number of solver options file solvestat solver status

Example:

m.reslim = 60; m.optcr = 0;
solve m minimize objvar using MINLP;
display m.resusd;

Basic Modeling 17 / 90

Solving a model
» Passing a model to a solver and evaluation of results
» Specification of one free variable to be minimized or maximized
» Syntax:

1 solve modelname using modeltyp maximizing|minimizing varname];
2 solve modelname maximizing|minimizing varname using modeltyp ;

» the model type defines the problem class to be used for the model:

LP a linear problem
QCP quadratically constraint problem (only linear and quadratic terms)
NLP a nonlinear problem with continuous functions
DNLP a nonlinear problem with discontinuous functions
MIP a mixed-integer linear problem
MIQCP a mixed-integer quadratically constraint problem
MINLP a mixed-integer nonlinear problem
CNS a nonlinear constraint satisfaction problem (no objective function)
RMIP,... a mixed-integer problem with relaxed integrality restrictions
» Example:

1 solve m using MINLP minimizing objvar;
2 solve m using RMINLP min objvar;

Basic Modeling 18 / 90

GAMS command line call

Calling GAMS from the command line:

$ gams <modelfile> { [-]key=value | key value }

Examples:

> gams
> gams
> gams
> gams
> gams
>

gams

Basic Modeling

trnsport
trnsport
trnsport
trnsport
trnsport

trnsport

{ --ControlVariable=string }

.gms

.gms LP=CBC

LP CBC
-LP CBC
-LP CBC --Output=result.txt

19 / 90

Passing command line parameters in the GAMS IDE

» in the IDE, command line parameters can be passed to GAMS via the

parameter field

‘wm gamside: C:\Users\franz\Documents\gamsdir\projdir\g
o= File Edit Search Windows Utilities Help

E PR e D e .

Kleingms | kleinlst | synheatams | spnheatlst|[tmspottams tmsportfst

Parameter Field

that meets

xtensions.
3.

Basic Modeling

20 / 90

GAMS Log

The GAMS log can be written to the console, to standard output and/or to a file.

This is controlled by the command line parameter logOption (or lo).
The following items (and more) are part of the log:
» GAMS version

kkk kokkkkkkkkkkkk BETA release
%% GAMS Base Module 24.5.0 r53642 BETA Released 25Augl5 WEI x86 64bit/MS Windows
*okk kkokskokkkokkkkkxk BETA release

> Licensee
Licensee: Lutz Westermann G141124/0001AW-GEN
GAMS Software GmbH DC8674

» Problem statistics
- 2 rows 3 columns 5 non-zeroes
- 2 discrete-columns

» Solver log
Cplex 12.6.2.0

Reading data...
Starting Cplex...

> Results
MIP Solution: 8.000000 (0 iterations, O nodes)
Final Solve: 8.000000 (0 iterations)
Best possible: 8.000000
Absolute gap: 0.000000
Relative gap: 0.000000

Basic Modeling

21 /90

Listing File

Running a GAMS model generates a listing file (.1st file).

Compilation Errors:
» are indicated by **xx*

» contain a '$’ directly below the point at which the compiler thinks the error
occurred

» are explained near the end of the line-numbered listing part

» in the IDE, they are also indicated by red lines in the process (log) window
(can be double-clicked)

» check carefully for the cause of the first error, fix it, and try again

» usual causes: undefined / undeclared symbols (parameters, variables,
equations), unmatched brackets, missing semi-colons

Basic Modeling 22 /90

Listing File: Equation and Column Listing

Equation Listing:

>

>

>

listing of generated equations with sets unrolled, parameters removed, ...
useful for model debugging: is the intended model generated?
for nonlinear equations, a linearization in the starting point is shown

AcidDef.. AcidDilut*AcidErr =e= 35.82-22.2%F4Perf;
-> AcidDef.. (1)*AcidDilut + 22.2%F4Perf + (3.6)*aciderr =E=
35.82 ; (LHS = 35.79, INFES = 0.03 ***x)

activity and violation of constraint in starting point also shown

Basic Modeling 23 /90

Listing File: Equation and Column Listing

Equation Listing:
» listing of generated equations with sets unrolled, parameters removed, ...
» useful for model debugging: is the intended model generated?
» for nonlinear equations, a linearization in the starting point is shown

AcidDef.. AcidDilut*AcidErr =e= 35.82-22.2%F4Perf;
-> AcidDef.. (1)*AcidDilut + 22.2%F4Perf + (3.6)*aciderr =E=
35.82 ; (LHS = 35.79, INFES = 0.03 ***x)

» activity and violation of constraint in starting point also shown

Column Listing:
» shows coefficients, bounds, starting values for generated variables

—- F4Perf F4 Performance Number

F4Perf
(.Lo, .L, .UP, .M = 1.45, 1.45, 1.62, 0)
22.2 AcidDef
(1) F4Def

Basic Modeling 23 /90

Listing File: Solve Summary

» generated for each solve command

» reporting status and result of solve

SOLVE SUMMARY
MODEL m OBJECTIVE F
TYPE NLP DIRECTION MINIMIZE
SOLVER CONOPT FROM LINE 85
*%%*x SOLVER STATUS 1 Normal Completion
*xx%% MODEL STATUS 2 Locally Optimal
*x%*x OBJECTIVE VALUE -1.7650
RESOURCE USAGE, LIMIT 0.006 1000.000
ITERATION COUNT, LIMIT 16 2000000000

EVALUATION ERRORS 0 0

Basic Modeling

24 /90

Listing File: Solution Listing
» equation and variable primal and dual values and bounds
» marking of infeasibilities, “non-optimalities”, and unboundedness

0

» . = zero

LOWER LEVEL UPPER MARGINAL
-- EQU Objective . . . 1.0000
-- EQU AlkylShrnk . . . -4.6116
-- EQU AcidBal . -0.0020 . 11.8406 INFES
-- EQU IsobutBal 0.0952 . 0.0563 INFES
-- EQU AlkylDef . 0.0127 . -1.0763 INFES
-- EQU OctDef 0.5743 0.5747 0.5743 -25.9326 INFES
-- EQU AcidDef 35.8200 35.8533 35.8200 0.2131 INFES
-- EQU F4Def -1.3300 -1.3300 -1.3300 -4.1992

LOWER LEVEL UPPER MARGINAL
-- VAR F -INF -1.4143 +INF .
-- VAR OlefinFeed 1.6198 2.0000 -0.1269 NOPT
-- VAR IsobutRec 1.3617 1.6000 -0.2133 NOPT
-- VAR AcidFeed 0.7185 1.2000 -0.0411 NOPT
-- VAR AlkylYld 2.8790 5.0000 -0.0076 NOPT
-- VAR IsobutMak . 1.8926 2.0000 -0.4764 NOPT
-- VAR AcidStren 0.8500 0.8998 0.9300 0.5273 NOPT

Basic Modeling 25 /90

Sets

» Basic elements of a model
» Syntax:

set set_name ["text"] [/element ["text"] {,element ["text"1l} /]
{,set_name ["text"] [/element ["text"] {,element ["text"l} /1} ;

Basic Modeling 26 / 90

Sets

» Basic elements of a model
» Syntax:

set set_name ["text"] [/element ["text"] {,element ["text"1l} /]
{,set_name ["text"] [/element ["text"] {,element ["text"l} /1} ;

» Name set_name is identifier
» Elements have up to 63 characters, start with letter or digit or are quoted:

A Phos-Acid September 1986 1952-563 Line-1
>*TOTALx*’ ’10%incr’ 712" /foot’ "Line 1"

» Elements have no value (1), that is, '1986" does not have the numerical value
1986 and '01" # '1’
» Text has up to 254 characters, all in one line

Basic Modeling 26 / 90

Sets

» Basic elements of a model
» Syntax:

set set_name ["text"] [/element ["text"] {,element ["text"1l} /]
{,set_name ["text"] [/element ["text"] {,element ["text"l} /1} ;

» Name set_name is identifier
» Elements have up to 63 characters, start with letter or digit or are quoted:

A Phos-Acid September 1986 1952-563 Line-1
>*TOTALx*’ ’10%incr’ 712" /foot’ "Line 1"

» Elements have no value (1), that is, '1986" does not have the numerical value
1986 and '01" # '1’

» Text has up to 254 characters, all in one line

» Example:

Set n Nutrients

/ Prot "Protein (mg)"

VitA "Vitamine A", vitC ’Vitamine C’,
Calc Calcium

/i

g W N e

Basic Modeling 26 / 90

Data

> data in GAMS consists always of real numbers (no strings)
» uninitialized data has the default value 0
» 3 forms to declare data:

> Scalar: a single (scalar) date
> Parameter: list oriented data
> Table: table oriented data (at least 2 dimensions)

Basic Modeling 27 / 90

Data

> data in GAMS consists always of real numbers (no strings)
» uninitialized data has the default value 0
» 3 forms to declare data:

> Scalar: a single (scalar) date
> Parameter: list oriented data
> Table: table oriented data (at least 2 dimensions)

Scalar Data:
» Syntax:

scalar[s] scalar_name [text] [/signed_num/]
{ scalar_name [text] [/signed_num/] };
» Example:

1 Scalars rho Discountfactor / .15 /
2 izf internal rate of return;

Basic Modeling 27 / 90

Data: Parameters

Parameter:
» can be indexed over a one or several sets
» Syntax:

parameter[s] param_name [text] [/ element
{,element

{,param_name [text] [/ element

{,element

signed_num
signed_num} /]
signed_num
signed_num} /] } ;

1]
[R T T T

» Example:

1 set ice icecreams / chocolate, strawberry, cherry, vanilla /;
2 parameter demand(ice) / chocolate 50, strawberry = 30
3 vanilla 20 /

» Example:

set ¢ ’‘countries’ / jamaica, haiti, guyana, brazil /;
parameter demand(c, ice) "Demand of icecream per country (t)"
/ Jamaica.Chocolate 300, Jamaica.Strawberry 50, Jamaica.Cherry 5
Haiti. (Chocolate,Vanilla, Strawberry) = 30,
(Guyana,Brazil) .Chocolate 100 /

g W N

Basic Modeling 28 / 90

Data: Tables

Tables:
» Syntax:
table table_name [text] EOL
element { element }
element signed_num { signed_num } EQOL
{element signed_num { signed_num } EOL} ;
» Example:
1 table demand(c, ice) "Demand of icecream per country (t)"
2 Chocolate Strawberry Cherry Vanilla
3 Jamaica 300 50 5
4 Haiti 30 30 30
5 (Guyana,Brazil) 100 H

» no “free form": position of elements is of importance

» tables with more than 2 dimensions are also possible

Basic Modeling 29 /90

Exercise: Cows & Pigs Continued

Define:
> a set of animals (i)
> a parameter with profit for each animal (p(i))
a parameter with maximal number for each animal (xmax(i))
a parameter for the max number of all animals (maxanimal)
an integer variable to count how many of each animal to buy (x(i))
a real variable to hold the profit (profit)

v

an equation to define the objective

> an equation to limit the total number of purchased animals by maxanimal
Fill sets and parameters with the data from the original example:

» 2 animals: cow and pig

» profit for cow: 3 profit for pig: 2

» maximal number of cows: 2 maximal number of pigs: 2

» maximal number of animals: 3

Basic Modeling 30/ 90

Exercise: Cows & Pigs Continued
Define:

> a set of animals (i)

> a parameter with profit for each animal (p(i))

a parameter with maximal number for each animal (xmax(i))

a parameter for the max number of all animals (maxanimal)

an integer variable to count how many of each animal to buy (x(i))
a real variable to hold the profit (profit)

v

an equation to define the objective

> an equation to limit the total number of purchased animals by maxanimal
Fill sets and parameters with the data from the original example:

» 2 animals: cow and pig

» profit for cow: 3 profit for pig: 2

» maximal number of cows: 2 maximal number of pigs: 2

» maximal number of animals: 3

File: cowspigs2.gms

Basic Modeling 30/ 90

Sequences, Alias

Sequences in Sets: *-Notation

> set t "time" / 2000%2008 /;
corresponds to

1 set t "time" / 2000,2001,2002,2003,2004,2005,2006,2007,2008 /;

» albcxa20bc is different from a01bc*a20bc
» the following are wrong: alx1*a9x9, al*b9

Basic Modeling 31 /90

Sequences, Alias

Sequences in Sets: *-Notation

> set t "time" / 2000%2008 /;
corresponds to

1 set t "time" / 2000,2001,2002,2003,2004,2005,2006,2007,2008 /;

» albcxa20bc is different from a01bc*a20bc
» the following are wrong: alx1*a9x9, al*b9

Several names for one set: alias command

» Syntax: alias(set_name, set_name \{, set_name\})

» Example:
1 set ice / chocolate, strawberry, cherry, vanilla /;
2 alias(ice, icecreme, mantecado, sorvete);

Basic Modeling 31 /90

Data: Assignments

» Scalar Assignment:

1 scalar x / 1.5 /;
2 x =1.2;
3 x =x + 2;

» Indexed Assignment:

1 Set row / rlxrl0 /

2 col / cl*clO /

3 subrow (row) / r7xrl0 /;

4 Parameter a(row,col), r(row), c(col);

5 a(row,col) = 13.2 + r(row)=*c(col);

6 a(’r77,7c4”) = —2.36;

8 al(subrow,’cl0’) = 2.44 — 33%r (subrow);

10 a(row,row) = 7.7 — r(row);

11 alias(row, rowp);

12 a(row, rowp) = 7.7 — r(row) + r(rowp);

Basic Modeling 32 /90

Data: Expressions

Expression: an arbitrarily complex calculation instruction

Arithmetic operators: ** (exponentiate), +, -, *, /
>

X 5 + 4x3%%x2;

5 4+ 4% (3xx2);

2 X

> x**n corresponds to exp(n*log(x)) = only allowed for x > 0
(power (x,n) can be used instead if n € I)
» population(t) = 56%(1.0156**(ord(t)-1))

Basic Modeling 33 /90

Data: Expressions

Expression: an arbitrarily complex calculation instruction

Arithmetic operators: ** (exponentiate), +, -, *, /
>

X 5 + 4x3%%x2;

5 4+ 4% (3xx2);

2 X

> x**n corresponds to exp(n*log(x)) = only allowed for x > 0
(power (x,n) can be used instead if n €I)
» population(t) = 56%(1.0156**(ord(t)-1))
Indexed Operations:
» Syntax: indexed_op((controlling_indices), expressions)
» indexed_op can be: sum, prod, smin, smax

parameter demand(c, ice)
totaldemand (c)
completedemand
mindemand (ice)
totaldemand(c) =
completedemand =
mindemand (ice) =

sum(ice,

G B N O N

smin (c,

sum((c,ice),

"demand (t)"

"totaler demand per country (t)"
"totaler demand for all countries (t)"
"minimal demand per icecream";
demand (c, ice));

demand (c, ice)) ;

demand (c, ice));

Basic Modeling

33 /90

Data: Expressions

Expression: an arbitrarily complex calculation instruction

Arithmetic operators: ** (exponentiate), +, -, *, /
>

X 5 + 4x3%%x2;

5 4+ 4% (3xx2);

2 X

> x**n corresponds to exp(n*log(x)) = only allowed for x > 0
(power (x,n) can be used instead if n €I)
» population(t) = 56%(1.0156**(ord(t)-1))
Indexed Operations:
» Syntax: indexed_op((controlling_indices), expressions)
» indexed_op can be: sum, prod, smin, smax

1 parameter demand(c, ice) "demand (t)"

2 totaldemand(c) "totaler demand per country (t)"

3 completedemand "totaler demand for all countries (t)"
4 mindemand (ice) "minimal demand per icecream";

5 totaldemand(c) = sum(ice, demand (c, ice));

6 completedemand = sum((c,ice), demand(c,ice));

7 mindemand(ice) = smin(c, demand (c, ice));

Functions: errorf (x), exp(x), power(x,n), sqr(x), uniform(a,b),

normal (mean,sdev), ...
Basic Modeling

33 /90

Option command

» specification of systemwide parameters to control output, solving process, ...
» Syntax:

option keywordl [= valuel] { ,|EOL keyword2 = [value2] }
> some important parameters:

keyword meaning default
iterlim iteration limit 2000000000
reslim time limit 1000 (1)
optca absolute gap tolerance 0.0

opter relative gap tolerance 0.1 (!!)

LP choice of LP solver CPLEX

NLP choice of NLP solver CONOPT

» Example:

option iterlim = 100, optcr = 0;
solve icesale using mip min cost;
option mip = cbc;

solve icesale using mip min cost;

w N

S

» options can also be set on the command line:
> gams icesale.gms mip=cbc optcr=0

Basic Modeling 34 /90

Display command

» display sets, data, variable/equation/model attributes in the listing file

» Examples:

display ice, sorbet;
display x.l, x.m;
display demand;
display satdemand.m;

W N e

» only non-zero values are displayed

» control number of digits after the decimal point for all displayed values

1 option decimals = 1 ;

» number of digits after the decimal point for variable x:

1 option x:6 ;

Basic Modeling 35 /90

Outline |

Compilation vs. Execution

Compilation vs. Execution 36 / 90

Compilation vs. Execution
GAMS processed models in 2 phases:

Compilation Phase:

reads the complete GAMS model and translate into GAMS specific byte code
processes declarations (variables, equations, sets, parameters)

processes labels (set elements) and data statements

execute all compile-time commands (next slides)

vV vy vy VvVvYy

Listing file:

GAMS 24.1.2 140979 Released Jun 16, 2013 LEX-LEG x86_64/Linux

3 16:03:38 Page 1

A Transportation Problem (TRNSPORT,SEQ=1)

Compilation

<echo of all processed lines>

COMPILATION TIME = 0.002 SECONDS 3 MB 24.1.2 r40979 LEX-LEG
Execution Phase:

> executes commands in program: assignments, solve, loop, while, for, if, ...

Compilation vs. Execution 37 /90

Compile Time Commands

>
>
>
>

>

introduced by $ sign in the first column (!)

Syntax: $commandname argumentlist {commandname argumentlist}
modify behavior of GAMS compiler

allow program flow control on compilation level: call external programs,
include other files, if-else, goto, ...

modifying and reading compile-time variables

Examples:

>

1

Sw N e

define a title for your GAMS program

$Title A Transportation Problem

define a section that contains only comments

SonText

This problem finds a least cost shipping schedule that meets
requirements at markets and supplies at factories.

SoffText

disable echoing of input lines in listing file

SoffListing

Compilation vs. Execution

38 /90

Compile Time Variables

» compile-time variables hold strings
» their value is accessed to via the %variablename, notation

» values are assigned via $set or $eval commands or on the GAMS command
line via double-dash-options: gams --variablename variablevalue

» for $eval, the variable value string is interpreted as numerical expression
» Example:

1 $set N 10
2 S$eval Nsgr %N% * $%N%
3 set i/ 1 %N% /;

» variants $setlocal, $setGlobal, $evallocal, $evalGlobal allow to
control the (file)scope of a variable

Compilation vs. Execution 39 /90

Compile Time Program Control: $If

» $If allows to do conditional processing

» Syntax: $If [not] <conditional expression> new_input_line

» only one-line clauses allowed (new_input_line can be on next line, though)
» Examples:

$if exist myfile.dat $log "myfile.dat exists, yeah!"
$if not set scenario $set scenario basic

4 scalar a;
5 $if $difficulty% == easy a = 5;
6 $if not %difficulty% == easy a 10;

Compilation vs. Execution 40 / 90

Compile Time Program Control: $If

» $If allows to do conditional processing

» Syntax: $If [not] <conditional expression> new_input_line

» only one-line clauses allowed (new_input_line can be on next line, though)
>

Examples:

$if exist myfile.dat
$if not set scenario

4 scalar a;
5 $if $difficulty$
6 $if not %difficulty$

$log "myfile.dat exists, yeah!"
$set scenario basic

== easy a = 5;
== easy a 10;

» $IfThen-$Elself-$Else-$Endif allows to control activity for a set of

statements
» Example:

scalar a;

Sifthen $difficulty%
a =5;

Selse

a = 10;

Sendif

o U W N

== easy

Compilation vs. Execution

40 / 90

Compile Time Program Control: $Goto

» $Goto-$Label allows to skip over or repeat sections of the input

» Example:

scalar a / 5 /;

$if %difficulty% == easy S$goto easy
a = 10;

$label easy

Sw N e

Compilation vs. Execution 41 / 90

Executing Shell Commands

» $Call passes a following string to the current shell and waits for the
command to be completed

» if the string starts with a '=', the operating system is called directly, i.e., no
shell is invoked

» Example:

1 $call "gamslib trnsport"
2 $call "=gams trnsport"

4 $if exist myfile.dat $call cp myfile.dat mycopy.dat

» the errorLevel functions allows to check whether a previous command (e.g.,
$call) executed without error:

$Scall "gamslib trnsport"
$call "gams trnsport"
$if errorlevel 1 $abort "ouch! — solving trnsport failed"”

w N

Compilation vs. Execution 42 / 90

Outline |

Input / Output

Input / Output 43 / 90

Writing text files

» $Echo and $onEcho-$offEcho allows to write to text files

» Example:

$Echo "hello, world!" > myfile.txt
$OnEcho >> myfile.txt

ahoy—hoy!

$SOffEcho

Sw N e

» > myfile.txt creates a new file myfile.txt, thereby overwriting a possibly
existing one of the same name

» >> myfile.txt appends to an existing file myfile.txt

» Recall: These are compilation-time commands! Not usable to write solve
outcomes or similar; use display command or put-facility (later) for this.

Input / Output 44 / 90

Including text files

» $Include allows to include ASCII files into a GAMS program
» compilation is then continued for the included file

» Example:

1 Parameter d(i, j) distance in thousands of miles;
$include dist.inc

N

where dist.inc contains

1 Table d (i, j) distance in thousands of miles

2 new—york chicago topeka

3 seattle 2.5 1.7 1.8

4 san—diego 2.5 1.8 1.4

Input / Output 45 / 90

Including csv files

» $0nDelim enables comma separated value (csv) format for data in table or

parameter statements

Examples:

1 Table d(i, j) distance
2 Sondelim

3 $include dist.csv

4 Soffdelim

5 .

’

g W N e

Parameter d(i, Jj)
Sondelim

$include dist.txt
Soffdelim

/i

distance /

where dist.csv is

,new-york,chicago,topeka
seattle,2.5,1.7,1.8
san-diego,2.5,1.8,1.4

Input / Output

where dist.txt is

SEATTLE,NEW-YORK,2.5
SAN-DIEGO,NEW-YORK, 2.5
SEATTLE,CHICAGO,1.7
SAN-DIEGO,CHICAGOD,1.8
SEATTLE,TOPEKA,1.8
SAN-DIEGO,TOPEKA,1.4

46 / 90

Put Command

writing text files at execution time

associating an identifier fileid with a file: file fileid / myfile.txt /;
select a stream (and thus a file) to write to: put fileid;

writing some items (text, labels, numbers): put item {, item};

write a linebreak: put /;

vV VY VY VvV VY

close a stream: putclose;

Input / Output 47 / 90

Put Command

> writing text files at execution time
» associating an identifier fileid with a file: file fileid / myfile.txt /;
> select a stream (and thus a file) to write to: put fileid;
> writing some items (text, labels, numbers): put item {, item};
> write a linebreak: put /;
» close a stream: putclose;
» Example:
1 file fx /result.txt/;
2 put fx ’‘Shipped quantities between plants and markets’ /;
3 loop ((i, 3)Sx.1(i,73),
4 put ’Shipment from ', i.te(i):10, ' to ', Jj.te(j):10,
5 ’ in cases:’, x.1(i,73) /;
6); putclose;
gives
Shipped quantities between plants and markets
Shipment from seattle to new-york in cases: 50.00
Shipment from seattle to chicago in cases: 300.00
Shipment from san-diego to new-york in cases: 275.00
Shipment from san-diego to topeka in cases: 275.00

Input / Output

47 / 90

Text Items, Formatted Output

Label names and explanatory texts can be accessed via attributes:
» ident.ts: text associated with identifier
» element.tl: label associated with set element
> set.te(element): text associated with element of set

Input / Output 48 / 90

Text Items, Formatted Output

Label names and explanatory texts can be accessed via attributes:
» ident.ts: text associated with identifier
» element.tl: label associated with set element
> set.te(element): text associated with element of set

Local Item Formatting:

v

Syntax for formatting item output: item:{<>}width:decimals
{<>} specifies whether justified left (<), right (>), or centered (<>)
width is the field width

decimals is the number of decimals for numeric output

vy vVYyy

each can be omitted, e.g., x.1::5

Input / Output 48 / 90

Text Items, Formatted Output

Label names and explanatory texts can be accessed via attributes:
» ident.ts: text associated with identifier
» element.tl: label associated with set element
> set.te(element): text associated with element of set

Local Item Formatting:

v

Syntax for formatting item output: item:{<>}width:decimals

> {<>} specifies whether justified left (<), right (>), or centered (<>)
» width is the field width

» decimals is the number of decimals for numeric output

» each can be omitted, e.g., x.1::5

Global ltem Formatting:
» change field justification and width for all items of a type
» .1j, .nj, .sj, -tj, -1lw, .nw, .sw, .tw attributes of stream identifier
» see GAMS User’s Guide Section 15.10

Input / Output 48 / 90

Text Items, Formatted Output

Label names and explanatory texts can be accessed via attributes:
» ident.ts: text associated with identifier
» element.tl: label associated with set element
> set.te(element): text associated with element of set

Local Item Formatting:

v

Syntax for formatting item output: item:{<>}width:decimals

> {<>} specifies whether justified left (<), right (>), or centered (<>)
» width is the field width

» decimals is the number of decimals for numeric output

» each can be omitted, e.g., x.1::5

Global ltem Formatting:
» change field justification and width for all items of a type
» .1j, .nj, .sj, -tj, -1lw, .nw, .sw, .tw attributes of stream identifier
» see GAMS User’s Guide Section 15.10

Cursor Positioning:
» put On; moves cursor to column n of current line

Input / Output 48 / 90

Independence of Model and Data

GDX — GAMS Data Exchange:
» Binary data format for fast exchange of data with GAMS

» Stores sets, parameters, values of variables/equations with domain
information, but no symbolic information (e.g., equation algebra)

» Consistency: no duplicates or contradictions
» Platform independent

» Can be compressed

Input / Output

49 / 90

Independence of Model and Data

GDX — GAMS Data Exchange:

» Binary data format for fast exchange of data with GAMS

» Stores sets, parameters, values of variables/equations with domain
information, but no symbolic information (e.g., equation algebra)

vV Vv VY

» Tools and APIs to read and write from other environments:

Input / Output

>

» during compilation: $gdxin, $gdxout, $load, $unload, ...
» during execution: execute_load, execute_unload, ...

>

A A

Consistency: no duplicates or contradictions
Platform independent

Can be compressed
Read and write in GAMS:

on command line: parameter gdx=<filename>

gdxdump, csv2gdx, gdxviewer (win only), ...
Matlab, MS Access, MS Excel, ODBC/SQL, R, SQLite

low-level APIs for C, C++, C+#, Delphi, Fortran, Java, Python, VBA, VB.NET

high-level APls for C#, Java, and Python

49 / 90

GDX — Gams Data eXchange Format

> Alternative format to read and write GAMS data (sets, parameters, variables,
equations)

Data file for multiple GAMS symbols

Binary (no loss of precision)

No Symbolic Equations

Platform independent

Contains domain information
Validated data
> no syntax errors on read
» consistent: no duplicates, contradictions, etc.
Can be compressed
GDX Tools do not require a license
» Easily created by command line parameter gdx=filename

vVvyVvyVvyyvyy

vy

Input / Output 50 / 90

GDX — Gams Data eXchange Format

> Alternative format to read and write GAMS data (sets, parameters, variables,
equations)
Data file for multiple GAMS symbols
Binary (no loss of precision)
No Symbolic Equations
Platform independent
Contains domain information
Validated data

> no syntax errors on read

» consistent: no duplicates, contradictions, etc.
Can be compressed
GDX Tools do not require a license
Easily created by command line parameter gdx=filename
Inspect GDX file with IDE
Simple Exports from IDE
Zoo of tools around GDX

> 10 tools (gdxxrw, sql2gms, ...)

> Productivity tools (gdxdiff, gdxmerge)
» GDX API

» C, C++, Java, C#, Python, Fortran, ...

Input / Output 50 / 90

vVvyVvyVvyyvyy

vVvyVvyVvyyy

GDX Tools

Tool Description

ASK The utility can be used to get input from an user interactively.

BIB2GMS Analyses BibTeX files with file extension .bib and writes GAMS
source files that can be used to create various author, reference
and cross reference reports.

CHK4UPD Checks whether the user can update to a more recent GAMS
version.

CHOLESKY Calculates the Choleksy decomposition of a symmetric positive
definite matrix.

CSDP The semidefinite programming CSDP solver from COIN-OR.
The communication with CSDP requires the setup of matrix
data structures in a CSDP input file. In a sense a GAMS
model functions as a matrix generator.

CSV2GDX Reads a CSV file (comma separated values) and writes to a
GDX file.

EIGENVALUE | Calculates eigenvalues of a symmetric matrix.

EIGENVECTOR | Calculates eigenvector of a symmetric matrix.

ENDECRYPT A tool to encrypt and decrypt text files.

GAMSIDE GAMS Integrated Development Environment.

Input / Output

51 /90

GDX Tools

Tool Description

POSIX Utils | A collection of POSIX utilities which are usually available for
Windows and the different Unix systems and therefore help to
write platform independent scripts.

GDX2ACCESS Converts GDX data to MS Access tables.

GDX2HAR Translates files between GDX and HAR format.

GDX2SQLITE Dumps the complete contents of a GDX file into a SQLite2
database. From Amsterdam Optimization Modeling Group.

GDX2VEDA Translates a GDX file into the VEDA format.

GDX2XLS Converts GDX data into a MS Excel spreadsheet.

GDXCOPY Converts a GDX file into different GDX formats.

GDXDIFF Compares the data of symbols with the same name, type and
dimension in two GDX files and writes the differences to a
third GDX file.

GDXDUMP Writes scalars, sets and parameters (tables) to standard output
formatted as a GAMS program with data statements.

Input / Output

52 / 90

GDX Tools

Tool Description

GDXMERGE Combines multiple GDX files into one file. Symbols with the
same name, dimension and type are combined into a single
symbol of a higher dimension. The added dimension has the
file name of the combined file as its unique element.

GDXMRW A suite of utilities to import/export data between GAMS and
MATLAB and to call GAMS models from MATLAB and get
results back into MATLAB.

GDXRANK Reads one or more one dimensional parameters from a GDX
file, sorts each parameter and writes the sorted indices as a
one dimensional parameters to the output GDX file.

GDXRENAME | Replaces UEL strings in GDX files.

GDXRRW An interface between GAMS and R. It includes functions to
transfer data between GDX and R and a function to call GAMS
from R.

GDXTROLL Translates a GDX file into the TROLL format.

Input / Output

53 / 90

GDX Tools

Tool Description

GDXVIEWER | Views and converts data contained in GDX files.

GDXXRW Preferred utility to read and write MS Excel spreadsheet data.

HAR2GDX Translates files between GDX and HAR format.

IDECMDS Sends commands to the GAMSIDE.

INVERT Inverts a matrix.

MCFILTER Removal of duplicate and dominated points in a multi-criteria
solution set.

MDB2GMS Converts data from an MS Access database into a GAMS
readable format.

MODEL2TEX Translates a GAMS model into LaTeX

MPS2GMS Translates an MPS file into an equivalent short generic GAMS
program using a GDX file to store data.

MSAPPAVAIL | Checks if a MS Office Application is available.

SCENRED A tool for the reduction of scenarios that model random data

processes of a stochastic program. From Humboldt-University
Berlin.

Input / Output

54 / 90

GDX Tools

Tool Description

SCENRED2 Scenred?2 is a fundamental update of Scenred and offers a sce-
nario tree construction algorithm. From Humboldt-University
Berlin.

SHELLEXECUTE | Launches external programs from the command line.

SQL2GMS Converts data from an SQL database into a GAMS readable
format.

XLS2GMS Converts spreadsheet data from a MS Excel spreadsheet into
a GAMS readable format.

XLSDUMP Writes all worksheets of a MS Excel workbook to a GDX file.
Unlike gdxxrw, the program does not require that Excel is
installed.

XLSTALK Open/Close/Run macro in MS Excel.

Input / Output 55 / 90

Compile time vs. Execution time GDX

» Compile time GDX
> $gdxin filename connects to GDX file for reading
> $gdxout filename connects to GDX file for writing
> $gdxin and
texttt$gdxout closes connection to GDX file
> $load[DC] [M,R] symb[=name,<namel[.dimN]]
> $unload symb=name

» Execution time GDX

> Execute_load[DC] ‘filename’, symb[=namel
> Execute_loadpoint[DC] ‘filename’ [, symb[=name]]
> Execute_unload[DI] ‘filename’ [, symb[=name]]

Input / Output 56 / 90

GDX Limitations

» Cannot add records or symbols

> e.g.: combine two gdx files
» GDX is immutable

» Not self contained wrt GAMS:
> Needs declarations
» Zero vs non-existent
» GAMS is a sparse system. It does not store 0 (Zero)

Input / Output 57 / 90

Detour: Special Values

GAMS represents data as double precision numbers (no integers) plus some special
values:

» +inf, -inf (infinity)
> NA (not available)
» UNDF (undefined, cannot be part of input unless $onundf)
» EPS (numerical zero, logically present)
» Careful with numerical calculations (e.g. 0=EPS is true)
» What is Oxinf, 0/inf, eps/inf, eps/inf + eps

> Model Library model crazy gives all answers
» Mapval to check for a special value (mapval(x)>0, mapval (x)=mapval (undf))

Input / Output 58 / 90

Outline |

Dynamic Sets

Dynamic Sets 59 / 90

Subsets, Cardinality
Subsets:
» Syntax for set_namel C set_name2: set set_namel (set_name2);

» Example:
1 set ice / chocolate, strawberry, cherry, vanilla /;
2 set sorbet (ice) / strawberry, cherry /i

» Domain checking:

1 set sorbet (ice) / strawberry, banana /;

= error

Dynamic Sets 60 / 90

Subsets, Cardinality
Subsets:
» Syntax for set_namel C set_name2: set set_namel (set_name2);

» Example:
1 set ice / chocolate, strawberry, cherry, vanilla /;
2 set sorbet (ice) / strawberry, cherry /i

» Domain checking:

1 set sorbet (ice) / strawberry, banana /;

= error
Card(set)
> gives the number of elements in a set
» Example:
1 set c ‘countries’ / Jjamaica, haiti, guyana, brazil /;
2 scalar nc ’‘number of countries;
3 nc = card(c);

Dynamic Sets 60 / 90

Ordered Sets

Lag & Lead Operations:
> allow to access neighbors (next or further distant) of elements in a priori
explicitly specified ordered set
» Syntax: setelement + n
» Note: x(setelement+n) is zero if position of setelement > card(set)-n
» Example:

1 Set t / 1x24 /;

2 Variables level (t), inflow(t), outflow(t);

3 Equation balance (t) couple fill levels of reservoir over time;
4 . .

5

e an initial fill level of zero

balahce(t).. level (t) =e= level (t—1) + inflow(t) — outflow(t);

* implici

Dynamic Sets 61 / 90

Ordered Sets

Lag & Lead Operations:
> allow to access neighbors (next or further distant) of elements in a priori
explicitly specified ordered set
» Syntax: setelement + n
» Note: x(setelement+n) is zero if position of setelement > card(set)-n
» Example:

1 Set t / 1x24 /;

2 Variables level (t), inflow(t), outflow(t);

3 Equatlon balance(t) couple fill levels of reservoir over time;
4

5

e an initial fill level of zero

balance(t).. level (t) =e= level (t—1) + inflow(t) — outflow(t);

* 1mpl

0rd(setelement):
» gives position of an element in an a priori explicitly specified ordered sets
» Example:

1 Set t / 1x24 /;
2 Parameter hour (t);
3 hour (t) = oxd(t);

Dynamic Sets 61 / 90

Dynamic Sets

>

>
>
>
>

w N

-4 o u

10

dynamic sets allow elements to be added or removed

dynamic sets are usually domain-checked, i.e., subsets

Syntax: setname(othersetelement) = yes | no (add/remove single element)
Syntax: setname(subset) = yes | no (add/remove another subset)
Example:

set ice / chocolate, strawberry, cherry, vanilla /;
Parameter demand(ice) / chocolate 1000, strawberry 500,

cherry 10, vanilla 100 /;
set sorbet (ice);
sorbet (ice) = yes;
sorbet (/chocolate’) = no; sorbet (“vanilla’) = no;
Set highdemand(ice) ice creams with high demand;
highdemand(ice) = (demand(ice) >= 500);

most often used as controlling index in an assignment or equation definition

Scalar sumhighdemand;
sumhighdemand = sum(highdemand, demand (highdemand)) ;

Dynamic Sets 62 / 90

Example: refer to first/last period of discrete-time models

Set t / 1x24 /;
Sets tb(t) base period
tn(t) non—base periods
tt(t) terminal period;
th(t) = (oxrd(t) = 1);
tn(t) = (ord(t) > 1);
tt(t) = (ord(t) = card(t));
Variables level (t), inflow(t), outflow(t);
Equations balance (t) couple fill levels of reservoir over time
basebalance (t) define fill level for base period;
* only for time periods > base period

balance (tn(t)).. level(t) =e= level (t—1) + inflow(t) — outflow(t);
* only for base period

basebalance (tb) .. level (tb) =e= 100 + inflow(tb) — outflow(tb);

* lower bound on fill level in terminal period

level.lo(tt) = 100;

Alternatively (but less readable):

equation basebalance; basebalance..
sum(tb, level (tb)) =e= 100 + sum(tb, inflow(tb) — outflow(tb));

Dynamic Sets 63 / 90

Multidimensional Sets

Multidimensional Sets:
> describing assignments (relations) between sets

» Example:

sets ¢ ’‘countries’ / jamaica, haiti, guyana, brazil /
h ’“harbors’ / kingston, s—domingo, georgetown, belem /;
set hc(h, c¢) harbor to country relation
/ kingston. jamaica, s—domingo.haiti
georgetown.guyana, belem.brazil /;

g W N

Dynamic Sets 64 / 90

Singleton Sets

» A singleton set is a special set that is either empty or a singleton, i.e., has
zero or one elements:

| Set i / a, b, c /;
2 Singleton Set / d /
3 k(1) / b /
4 1(i,3) / c.d /i

» Data statements with more than 1 element will create a compilation error:

1 Singleton Set s / sl*s3 /;
*kokok $844
2 display s;

Error Messages
844 Singleton with more than one entry (see $onStrictSingleton)

» Useful to simplify access to parameters on a dynamically defined element:

Set t / 1x12 /;
Parameter a(t);
Singleton Set tb(t); tb(t) = (ord(t) = 1);

w N

Can now use a(tb) instead of sum(tb,a(tb)).

Dynamic Sets 65 / 90

sameas and diag

sameas(setelement, otherelement) and sameas(setelement, “text")
diag(setelement, otherelement) and diag(setelement, “text”)

> sameas returns true if identifiers for given set elements are the same, or if
identifier of one set element equals a given text

» sameas can also be used as a set

» diag is like sameas, but return 1 if true, and 0 otherwise

» Example:

1 sets icel / chocolate, strawberry, cherry, vanilla /
2 ice2 / strawberry, cherry, banana /;

3 scalar ncommon;

4 ncommon = sum((icel, ice2), diag(icel,ice2));

5 ncommon = sum(sameas (icel, ice2), 1);

Dynamic Sets 66 / 90

Conditional expressions: $ Operator
Boolean Operators:
» numerical operators: 1t, <, le, <=, eq, =, ne, <>, ge, >=, gt, >
» logical operators: not, and, or, xor
» set membership: a(i) evaluates to true if and only if i is contained in the
(sub)set a, otherwise false
» true corresponds to 1, false to 0

Dynamic Sets 67 / 90

Conditional expressions: $ Operator
Boolean Operators:
» numerical operators: 1t, <, le, <=, eq, =, ne, <>, ge, >=, gt, >
» logical operators: not, and, or, xor
» set membership: a(i) evaluates to true if and only if i is contained in the
(sub)set a, otherwise false
» true corresponds to 1, false to 0

$-Operator:
» allows to apply necessary conditions
» $(condition) can be read as “if condition is true”
» Example:
“If b>1.5, then let a=2" = a$(b > 1.5) = 2;
“If b>1.5, then let a= 2, otherwise let a=0." = a = 2$(b > 1.5);
» $ on left side: no assignment, if condition not satisfied
» $ on right side: always assignment, but term with $ evaluates to 0, if
condition not satisfied
» the combination $= term is a short form of $ on the left side with condition
term and assignment to term:
> a $= b; = a$(b>0) = b;
» cannot be used in declarations

Dynamic Sets 67 / 90

Applications for $ Operator

Filtering in indexed operations:

parameter sorbetbalance;

set ice; set sorbet (ice);

sorbetbalance = sum(ice$sorbet (ice), price(ice)*purchase.l(ice));
sorbetbalance = sum(sorbet (ice), price(ice) = purchase.l (ice));

Dynamic Sets 68 / 90

Applications for $ Operator

Filtering in indexed operations:

parameter sorbetbalance;

set ice; set sorbet (ice);

sorbetbalance = sum(ice$sorbet (ice), price(ice)*purchase.l(ice));
sorbetbalance = sum(sorbet (ice), price(ice) = purchase.l (ice));

Conditioned indexed operations:

rho = sum(i$(sig(i) ne 0), 1/sig(i) — 1);

Dynamic Sets 68 / 90

Applications for $ Operator

Filtering in indexed operations:

parameter sorbetbalance;

set ice; set sorbet (ice);

sorbetbalance = sum(ice$sorbet (ice), price(ice)*purchase.l(ice));
sorbetbalance = sum(sorbet (ice), price(ice) = purchase.l (ice));

Conditioned indexed operations:

rho = sum(i$(sig(i) ne 0), 1/sig(i) — 1);

Conditioned equations:

Equation satdemand(ice);
satdemand (ice) $sorbet (ice) .. purchase (ice) =g= demand(ice);

balance (t) $ (oxd(t)>1) ..
level (t) =e= level (t—1) + inflow(t) — outflow(t);

Existence of variables in constraints:

variables x, y; parameter A; equation e;
e.. x + y$(A>2) =e= A;

Dynamic Sets 68 / 90

No Variables in $ condition

» The following DOES NOT WORK:

1 binary variable x; variable y; equation el, e2;
2 el$(x = 1).. y =1= 100;
3 e2 .. yS(x = 1) =1= 100;

» The value of x is decided by the solver, not by GAMS.

» However, GAMS has to evaluate $-operators when assembling an instance in
the Solve statement.

> Instead, you have to reformulate:

1 e.. vy =1= 100 » x + y.up x (1-x);

Thatis: x=1 = y< 100; x=0 = y<y.up.

Dynamic Sets 69 / 90

Outline |

Program Flow Control

Program Flow Control 70 / 90

Finding a good local optimum to a NLP: Multistart

» Starting an NLP solver from different starting points and pick the best
solution.
» If we don't know how to pick a good point, let's pick one randomly.

Program Flow Control 71/ 90

Finding a good local optimum to a NLP: Multistart

» Starting an NLP solver from different starting points and pick the best
solution.

» If we don't know how to pick a good point, let's pick one randomly.
» Multistart algorithm:
1. fY =0
2. for k=1to N, do
2.1 Generate starting point x uniformly at random over [x, X].
2.2 Run NLP solver from x and obtain solution x*.
2.3 if f(x*) < fYU: fY = f(x*) and xY = x*
3. Return xY and fY.

» The GAMS solver MSNLP implements such an algorithm.

Program Flow Control

71/ 90

Finding a good local optimum to a NLP: Multistart
» Starting an NLP solver from different starting points and pick the best

solution.

» If we don't know how to pick a good point, let's pick one randomly.

» Multistart algorithm:
1. fY=x
2. for k=1to N, do

2.1 Generate starting point x uniformly at random over [x, X]
2.2 Run NLP solver from x and obtain solution x*.
2.3 if f(x*) < fYU: fY = f(x*) and xY = x*

3. Return xY and fU.

» The GAMS solver MSNLP implements such an algorithm.

» Example:

Max B(x),

where ¢(x) = (10 — x) sin®(27x)

v

Optimal solution:
x = 0.24971128, ¢(x) = 9.75014433

» File: nlpsin.gnms

Program Flow Control

10

—-10

Program flow control, loop command

» controlling the execution of a GAMS program
» commands: loop, if-else, while, for
» declarations and definition of equations are not allowed inside these commands

» solve statements are allowed

Program Flow Control 72 / 90

Program flow control, loop command

» controlling the execution of a GAMS program

» commands: loop, if-else, while, for

» declarations and definition of equations are not allowed inside these commands

» solve statements are allowed

loop command:
» Syntax:

loop(controllingset[$(condition)],
statement {; statement}
)3

» Example:

set t / 1985%1990 /;
parameter pop(t) / 1985 3456 /
growth(t) / 1985 25.3, 1986
1988 27.1, 1989
loop (t, pop(t+l) = pop(t) + growth(t));

g W N e

1987 26.2,
1990 26.6 /;

Program Flow Control

72 /90

If-Elseif-Else command

» Syntax:

if(condition, statement {; statement};
{elseif condition, statement {; statement}; }
[else statement {; statement};]

)5
» Example:
1 if((ml.modelstat eq $ModelStat.Infeasible%),
2 4 odel ml 5] le,
30 x bo again
4 x.up(j) = 2xx.up(Jj);
5 solve ml using lp min z;
6 elseif ml.modelstat eq %ModelStat.Optimalt,
7 display x.1;
8 else
9 abort "Error solving the model";
10)5

Program Flow Control 73 / 90

While, Repeat commands

While command:
» Syntax: while(condition, statement {; statement};);
» Example:

scalar count / 1 /;
scalar globmin / inf /;
while (count le 1000,
x.1(j) = uniform(x.lo(j), x.up(Jj));
solve ml using nlp min obj;
if (obj.l le globmin, globmin = obj.l;);
count = count + 1;

W J oUW N

Program Flow Control 74 / 90

While, Repeat commands
While command:

» Syntax: while(condition, statement {; statement};);
Example:

v

scalar count / 1 /;
scalar globmin / inf /;
while (count le 1000,
x.1(j) = uniform(x.lo(j), x.up(Jj));
solve ml using nlp min obj;
if (obj.l le globmin, globmin = obj.l;);
count = count + 1;

W J oUW N

) i

Repeat command:
» Syntax: repeat(statement {; statement}; until condition);
» Example:

scalar count / 1 /; scalar globmin / inf /;
repeat (x.1(j) = uniform(x.lo(j), x.up(j));
solve ml using nlp min obj;
if (obj.l1 le globmin, globmin = obj.l;);
count = count + 1;
until count eq 1000);

o U W N

Program Flow Control 74 / 90

For command

for(i = start toldownto end [by incr], statement {; statement};);
» Note: i is a scalar, not a set

» start, end, and incr can be real numbers, but incr needs to be positive

v

Example:

scalar count;

scalar globmin / inf /;

for(count = 1 to 1000,

x.1(j) = uniform(x.lo(Jj), x.up(3j));

solve ml using nlp min obj;

if (obj.l le globmin, globmin = obj.l;);
) i

g o U W N

Program Flow Control 75 / 90

Exercise: Solve the Cows & Pigs example by Complete
Enumeration in GAMS

x1 the number of cows to purchase (x; € {0,1,2})
xp the number of pigs to purchase (x; € {0,1,2})
maximize z = 3x; + 2x
such that x; +x <3

Program Flow Control 76 / 90

Exercise: Solve the Cows & Pigs example by Complete
Enumeration in GAMS

x1 the number of cows to purchase (x; € {0,1,2})
xp the number of pigs to purchase (x; € {0,1,2})
maximize z = 3x; + 2x
such that x; +x <3

scalar x1, x2, obj;
scalar objbest, xlbest, x2best;
objbest = 0;
for(x1 = 0 to 2,
for(x2 = 0 to 2,
if(x1 + x2 <= 3,
obj = 3xx1 + 2*x2;
if(obj > objbest,
xlbest = x1;
x2best = x2;
objbest = obj;
))))
display xlbest, x2best, objbest;

File: cowspigsenum.gms

Program Flow Control

76 / 90

	Introduction
	Basic Modeling
	Compilation vs. Execution
	Input / Output
	Dynamic Sets
	Program Flow Control
	Exchanging Data with other Applications

